

IJMRR/April. 2025/ Volume 15/Issue 2s/316-319

Avurthula Mallika/ International Journal of Management Research & Review

Diabetes Prediction Using Machine Learning

Avurthula Mallika

PG scholar, Department of MCA, CDNR collage, Bhimavaram, Andhra Pradesh. **K.Rambabu**

(Assistant Professor), Master of Computer Applications, DNR collage, Bhimavaram, Andhra Pradesh.

Abstract

Diabetes Mellitus is among critical diseases and lots of people are suffering from this disease. Age, obesity, lack of exercise, hereditary diabetes, living style, bad diet, high blood pressure, etc. can cause Diabetes Mellitus. People having diabetes have high risk of diseases like heart disease, kidney disease, stroke, eye problem, nerve damage, etc. Current practice in hospital is to collect required information for diabetes diagnosis through various tests and appropriate treatment is provided based on diagnosis. Big Data Analytics plays an significant role in healthcare industries. Healthcare industries have large volume databases. Using big data analytics one can study huge datasets and find hidden information, hidden patterns to discover knowledge from the data and predict outcomes accordingly. In existing method, the classification and prediction accuracy is not so high. In this paper, we have proposed a diabetes prediction model for better classification of diabetes which includes few external factors responsible for diabetes along with regular factors like Glucose, BMI, Age, Insulin, etc. Classification accuracy is boosted with new dataset compared to existing dataset. Further with imposed a pipeline model for diabetes prediction intended towards improving the accuracy of classification.

Keywords: Diabetes prediction, machine Learning, Users health data, Accuracy, Precision

I. Introduction

Healthcare sectors have large volume databases. Such databases may contain structured, semi-structured or unstructured data. Big data analytics is the process which analyses huge data sets and reveals hidden information, hidden patterns to discover knowledge from the given data. Considering the current scenario, in developing countries like India, Diabetic Mellitus (DM) has become a very severe disease. Diabetic Mellitus (DM) is classified as Non-Communicable Disease (NCB) and many people are suffering from it. Around 425 million people suffer

from diabetes according to 2017 statistics. Approximately 2-5 million patients every year lose their lives due to diabetes. It is said that by 2045 this will rise to 629 million.[1]

Diabetes Mellitus (DM) is classified as Type-1 known as Insulin-Dependent Diabetes Mellitus (IDDM). Inability of human's body to generate sufficient insulin is the reason behind this type of DM and hence it is required to inject insulin to a patient. Type-2 also known as Non-Insulin-Dependent Diabetes Mellitus (NIDDM). This type of Diabetes is seen when body cells are not able to use insulin properly. Type-3 Gestational Diabetes, increase in blood sugar level in pregnant woman where diabetes is not detected earlier results in this type of diabetes.

DM has long term complications associated with it. Also, there are high risks of various health problems for a diabetic person. A technique called, Predictive Analysis, incorporates a variety of machine learning algorithms, data mining techniques and statistical methods that uses current and past data to find knowledge and predict future events[3].

By applying predictive analysis on healthcare data, significant decisions can be taken and predictions can be made. Predictive analytics can be done using machine learning and regression technique. Predictive analytics aims at diagnosing the disease with best possible accuracy, enhancing patient care, optimizing resources along with improving clinical outcomes.[4]

Machine learning is considered to be one of the most important artificial intelligence features supports development of computer systems having the ability to acquire knowledge from past experiences with no need of programming for every case. Machine learning is considered to be a dire need of today's situation in order to eliminate human

efforts by supporting automation with minimum flaws. Existing method for diabetes detection is uses lab tests such as fasting blood glucose and oral glucose tolerance. However, this method is time consuming. This paper focuses on building predictive model using machine learning algorithms and data mining techniques for diabetes prediction[5].

II. **Literature Survey**

Now days from health care industries large volume of data is generating. It is necessary to collect, store and process this data to discover knowledge from it and utilize it to take significant decisions. Diabetic Mellitus (DM) is from the Non Communicable Diseases (NCD), and lots of people are suffering from it. Now days, for developing countries such as India, DM has become a big health issue. The DM is one of the critical diseases which has long term complications associated with it and also follows with various health problems. With the help of technology, it is necessary to build a system that store and analyze the diabetic data and predict possible risks accordingly[1].

Predictive analysis is a method that integrates various data mining techniques, machine learning algorithms and statistics that use current and past data sets to gain insight and predict future risks. In this work machine learning algorithm in Hadoop MapReduce environment are implemented for Pima Indian diabetes data set to find out missing values in it and to discover patterns from it. This work will be able to predict types of diabetes are widespread, related future risks and according to the risk level of patient the type of treatment can be provided.[2]

Diabetes Mellitus or Diabetes has been portrayed as worse than Cancer and HIV (Human Immunodeficiency Virus). It develops when there are high blood sugar levels over a prolonged period. Recently, it has been quoted as a risk factor for developing Alzheimer, and a leading cause for blindness & kidney failure. Prevention of the disease is a hot topic for research in the healthcare community.[3]

Many techniques have been discovered to find the causes of diabetes and cure it. This research paper is a discussion on establishing a relationship between diabetes risk likely to be developed from a person's daily lifestyle activities such as his/her eating habits, sleeping habits, physical activity along with other indicators like BMI (Body Mass Index), waist circumference etc. Initially, a Chi-Squared Test of Independence was performed followed by application of the CART (Classification and Regression Trees) machine learning algorithm on the data and finally using Cross-Validation, the bias in the results was removed. [4]

When we have a huge data set on which we would like to perform predictive analysis or pattern recognition, machine learning is the way to go. Machine Learning (ML) is the fastest rising arena in computer science, and health informatics is of extreme challenge. The aim of Machine Learning is to develop algorithms which can learn and progress over time and can be used for predictions. Machine Learning practices are widely used in various fields and primarily health care industry has been benefitted a lot through machine learning prediction techniques. It offers a variety of alerting and risk management decision support tools, targeted at improving patients' safety and healthcare quality. [5]

With the need to reduce healthcare costs and the movement towards personalized healthcare, the healthcare industry faces challenges in the essential areas like, electronic record management, data integration, and computer aided diagnoses and disease predictions. Machine Learning offers a wide range of tools, techniques, and frameworks to address these challenges. This paper depicts the study on various prediction techniques and tools for Machine Learning in practice. A glimpse on the applications of Machine Learning in various domains are also discussed here by highlighting on its prominence role in health care industry.[6]

III. **Existing System:**

In existing method, the classification and prediction

Avurthula Mallika/International Journal of Management Research & Review

accuracy is not so high. Healthcare industries have large volume databases. Using big data analytics one can study huge datasets and find hidden information, hidden patterns to discover knowledge from the data and predict outcomes accordingly. Huge number of people is becoming its victim every day and many are unaware if they have it or not. There are two types of diabetes. Diabetes mellitus and diabetes. The test conducted to detect diabetes is physical examination and blood sugar test. More research is required to stop this disease. Machine learning and cloud computing will play a major role in the research related work to detect and timely cure it for the people. Diabetes specially affects the elderly and obese people. Diabetes can cause other variety of health problems like heart attack, kidney failure, high blood pressure and diabetic foot syndrome.

IV. Proposed System:

Diabetes can be controlled if it is predicted earlier. To achieve this goal this project work we will do early prediction of Diabetes in a human body or a patient for a higher accuracy through applying, Various Machine Learning Techniques. Machine learning techniques Provide better result for prediction by con-structing models from datasets collected from patients.

In this work we will use Machine Learning Classification and ensemble techniques on a dataset to predict diabetes. Which are K-Nearest Neighbor (KNN), Logistic Regression (LR), Decision Tree (DT), Support Vector Machine (SVM), Gradient Boosting (GB) and Random Forest (RF). The accuracy is different for every model when compared to other models. The Project work gives the accurate or higher accuracy model shows that the model is capable of predicting diabetes effectively. Our Result shows that Random Forest achieved higher accuracy compared to other machine learning techniques.

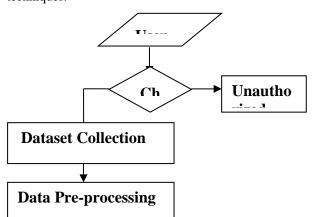


Fig. Block diagram of the proposed Method

Results Analysis

Logistic Regression: 71.42857142857143

K Nearest neighbors: 78.57142857142857

Support Moston Classifian: 73.2766323766323

Support Vector Classifier: 73.37662337662337

Naive Bayes: 71.42857142857143 Decision tree: 68.18181818181817 Random Forest: 75.97402597402598

Fig.1 Comparison of different ML techniques

Fig. Diabetes Prediction by user

Avurthula Mallika/ International Journal of Management Research & Review

Prediction: Wow! You DON'T have diabet

Fig. Predicted Results: Normal Patient

CONCLUSION

In this study, various machine learning algorithms are applied on the dataset and the classification has been done using various algorithms of which Logistic Regression gives highest accuracy of 96%. Application of pipeline gave AdaBoost classifier as best model with accuracy of 98.8%. We have seen comparison of machine learning algorithm accuracies with two different datasets. It is clear that the model improves accuracy and precision of diabetes prediction with this dataset compared to existing dataset. Further this work can be extended to find how likely nondiabetic people can have diabetes in next few years.

BIBLIOGRAPHY

- [1] A. Belle, R. Thiagarajan, S. M. R. Soroushmehr, F. Navidi, D. A. Beard, and K. Najarian, "Big Data Analytics in Healthcare," Hindawi Publ. Corp., vol. 2015, pp. 1–16, 2015.
- [2] J. Andreu-Perez, C. C. Y. Poon, R. D. Merrifield, S. T. C. Wong, and G.-Z. Yang, "Big Data for Health," IEEE J. Biomed. Heal. Informatics, vol. 19, no. 4, pp. 1193–1208, 2015
- [3] E. Ahmed et al., "The role of big data analytics in Internet of Things," Comput. Networks, vol. 129, no. December, pp. 459–471, 2017
- [4] "The big-data revolution in US health care: Accelerating value and innovation | McKinsey & Company." [Online]. Available: https://www.mckinsey.com/industries/healthcare-systems-andservices/our-insights/the-big-data-revolution-in-us-health-care. [Accessed: 12-May-2018].

- [5] M. Chen, Y. Hao, K. Hwang, L. Wang, and L. Wang, "Disease Prediction by Machine Learning over Big Data from Healthcare Communities," IEEE Access, vol. 5, no. c, pp. 8869–8879, 2017.
- [6] L. Zhou, S. Pan, J. Wang, and A. V. Vasilakos, "Machine learning on big data: Opportunities and challenges," Neurocomputing, vol. 237, pp. 350–361, May 2017.
- [7] J. B. Heaton, N. G. Polson, and J. H. Witte, "Deep learning for finance: deep portfolios," Appl. Stoch. Model. Bus. Ind., vol. 33, no. 1, pp. 3–12, Jan. 2017.
- [8] K. Lin, M. Chen, J. Deng, M. M. Hassan, and G. Fortino, "Enhanced Fingerprinting and Trajectory Prediction for IoT Localization in Smart Buildings," IEEE Trans. Autom. Sci. Eng., vol. 13, no. 3, pp. 1294–1307, Jul. 2016.
- [9] K. Lin, J. Luo, L. Hu, M. S. Hossain, and A. Ghoneim, "Localization Based on Social Big Data Analysis in the Vehicular Networks," IEEE Trans. Ind. Informatics, vol. 13, no. 4, pp. 1932–1940, Aug. 2017.
- [10] P. A. Chiarelli, J. S. Hauptman, and S. R. Browd, "Machine Learning and the Prediction of Hydrocephalus," JAMA Pediatr., vol. 172, no. 2, p. 116, Feb. 2018.
- [11] A. Jindal, A. Dua, N. Kumar, A. K. Das, A. V. Vasilakos, and J. J. P. C. Rodrigues, "Providing Healthcare-as-a-Service Using Fuzzy Rule-Based Big Data Analytics in Cloud Computing," IEEE J. Biomed. Heal. Informatics, pp. 1–1, 2018.
- [12] N. M. S. kumar, T. Eswari, P. Sampath, and S. Lavanya, "Predictive Methodology for Diabetic Data Analysis in Big Data," Procedia Comput. Sci., vol. 50, pp. 203–208, Jan. 2015.