

Hussain Munawwar Majid / International Journal of Management Research & Review

Information Exchange Framework To Enhance Cloud Storage Safety In The Period Of Massive Data

Hussain Munawwar Majid¹, Md Sameer Ali², Shaik Shahid Pasha³, Ms. B Nagalakshmi⁴

1,2,3B.E. Students, Department of IT, Lords Institute of Engineering and Technology Hyderabad

4Assistant Professor, Department of IT, Lords Institute of Engineering and Technology, Hyderabad

nagalakshmi@lords.ac.in

ABSTRACT

The project titled "Information Exchange Framework to Enhance Cloud Storage Safety in the Period of Massive Data" focuses on improving the security of data shared and stored in cloud environments. With the rapid growth of cloud computing and massive data generation, ensuring the confidentiality and integrity of data stored outside the user's trust domain has become a significant challenge. This framework introduces a Secret Sharing Group Key (SSGK) Management Protocol designed to protect data communication and storage unauthorized access. Unlike traditional access control systems, this approach uses a combination of symmetric and asymmetric encryption algorithms to secure data. Shared data is encrypted using a group key, while secret sharing mechanisms ensure that only authorized users can decrypt the data. The proposed system minimizes data leakage risks, prevents unauthorized modifications, and enhances overall privacy in cloud storage. Additionally, it reduces storage overhead by approximately 12%. Extensive security and performance analysis confirm the effectiveness of this protocol, making it a reliable solution for secure data sharing in large-scale cloud environments.

Keywords: Confidentiality, Integrity, Secret Sharing Group Key (SSGK), Symmetric and Asymmetric Encryption, Unauthorized Modifications, Performance Analysis

I. INTRODUCTION

In the era of massive data generation, cloud computing has emerged as a revolutionary technology, offering scalable and flexible storage and computing resources over the internet[1]. By pooling resources into a virtualized environment, cloud computing allows users and organizations to store, access, and share large volumes of data without the need for heavy investments in physical infrastructure. However, as cloud storage systems grow, so do the challenges related to data security, privacy, and integrity. When sensitive data is stored in cloud servers managed by third-party providers[2][3], it moves beyond the control domain of the data owner, increasing the risk of unauthorized access, data leakage, and malicious modifications. This raises significant concerns, especially in scenarios where personal, financial, or business-critical data is involved. Traditional security mechanisms like access control and basic encryption techniques are often insufficient to handle the complex and dynamic nature[4] of cloud environments. These methods either rely on trusted third parties or lack the capability to effectively prevent insider threats[5][6] and unauthorized data access by cloud service providers.

The protocol combines symmetric and asymmetric encryption techniques to secure data sharing. It ensures that the group key used for encryption is securely distributed using a secret sharing scheme.

Hussain Munawwar Majid / International Journal of Management Research & Review

To address these challenges, this project proposes a Secret Sharing Group Key (SSGK) Management Protocol that enhances data sharing security in cloud storage.

The protocol integrates both symmetric and asymmetric encryption techniques to safeguard data throughout its storage and exchange lifecycle.

It uses secret sharing schemes to distribute decryption keys securely among legitimate users, ensuring that only authorized parties can access the shared data. This approach not only strengthens the confidentiality and integrity of the data but also minimizes the risk of data breaches in the cloud. Additionally, the protocol reduces storage overhead, making it a practical solution for real-world applications where efficient and secure data exchange is essential.

The rapid advancements in technologies like Cloud Computing, Big Data, Business Intelligence, Data Mining, and the Internet of Things (IoT) have revolutionized how organizations store, process, and share information. Among these, cloud computing has emerged as a powerful and cost-effective solution[7], enabling individuals and enterprises to access computing resources and vast storage capacity over the internet on demand. In cloud computing, data is stored in large, centralized data centers operated by cloud service providers.

These resources form a shared pool that can be dynamically allocated to various applications and users. While this model offers significant benefits such as scalability, flexibility, reduced operational costs, and ease of access it also introduces serious challenges[8] regarding data security and privacy. One of the major concerns with cloud storage is that sensitive data is moved outside the control domain of the data owner. Storing data in third-party cloud environments raises the risks of unauthorized access, data leakage, manipulation, and even loss. Traditional

security mechanisms like basic access control lists and centralized key management systems are often inadequate, especially when dealing with large volumes of data and a wide range of users or stakeholders. Moreover, as the number of users, devices, and applications interacting with the cloud continues to grow, the number of potential access points increases dramatically. This not only complicates access control but also creates more vulnerabilities for cyber-attacks. Therefore, it becomes essential to design robust security frameworks[9] that not only protect data during storage but also ensure secure data exchange[10] between legitimate users. This project addresses these challenges by proposing an Information Exchange Framework that enhances the safety of cloud storage in the period of massive data generation. The core of this framework is a Secret Sharing Group Key (SSGK) Management Protocol designed to protect shared data and communications from unauthorized access.Additionally, the protocol is designed to minimize storage space overhead while maximizing data security. By implementing this system, organizations can protect sensitive data from external threats, insider attacks, and potential breaches by cloud service providers themselves. This framework provides a robust solution to the critical issues of data security and privacy in cloud environments. It supports secure data sharing, preserves data integrity, and promotes trust in cloud-based systems, making it highly suitable for enterprise applications dealing with massive and sensitive datasets.

II. RELATED WORK

A. Authentication by Email Reception – Don Libes This paper presents a lightweight authentication mechanism where email addresses are used to verify user identity on public servers, particularly in low-risk

Hussain Munawwar Majid/International Journal of Management Research & Review

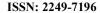
environments. By receiving a confirmation email, the system ensures that the user has control over the email account they register with. While simple, this mechanism provides a cost-effective way to authenticate users without needing complex infrastructures.

methodology

- ✓ Users register with their email addresses.
- ✓ The system sends a challenge email to the registered address.
- ✓ Users respond to verify their identity, proving ownership of the email account.
- ✓ Access is granted based on this verification loop.
- B. On Minimizing Energy Cost in Internet-Scale Systems P. Zhao et al.

This research focuses on large-scale cloud systems where energy consumption becomes a critical concern due to the dynamic nature of data processing and user demands. The authors propose a stochastic optimization model and a real-time request-mapping algorithm that balances energy costs and system performance. While this work targets energy efficiency, it highlights how the dynamic nature of cloud environments creates challenges not just in energy but also in data security and resource optimization. The concept of dynamic system behaviour aligns with the need for adaptive key management protocols in secure cloud storage. Methodology

- ✓ Models dynamic cloud data flows as a stochastic optimization problem.
- ✓ Uses real-time data to map user requests to data centers based on energy costs and workload.
- ✓ Balances between minimizing delay and reducing energy consumption.
- C. Risk and Safety Program Performance Evaluation
- K.-Y. Teng et al.


This paper emphasizes the importance of measuring the performance and maturity of risk and safety programs, especially within large agencies. Using business process modeling and self-assessment methods, it provides a framework for evaluating compliance with risk guidelines. The approach to systematic risk evaluation in this study is significant for your project since cloud storage involves continuous risk assessment related to data breaches, unauthorized access, and compliance with privacy standards. Your framework similarly aims to mitigate risks by securing the communication process and storage.

- Business process modeling for risk identification.
- ✓ Maturity assessment of risk programs.
- ✓ Systematic evaluation against compliance benchmarks.
- D. Fuzzy Preference Tree-Based RecommenderSystem D. Wu et al.

This work tackles challenges in recommendation systems where data structures are complex and user preferences are vague. It introduces a fuzzy set-based tree matching approach that effectively manages B2B service recommendations. Though focused on recommender systems, the methodology of managing complex data structures securely and efficiently aligns with your project's challenge of handling massive, sensitive data in the cloud while ensuring secure access control through secret sharing.

Methodology

- ✓ Uses fuzzy set theory to handle uncertain or vague user preferences.
- ✓ Represents data and user profiles as trees.
- ✓ Matches complex tree structures to generate personalized recommendations.
- E. Content-Aware Search Over Encrypted OutsourcedData Z. Fu et al.

Hussain Munawwar Majid / International Journal of Management Research & Review

This research presents a solution for searching over encrypted data stored in the cloud without compromising data confidentiality. It enables users to perform searches without decrypting the data, preserving privacy while allowing efficient retrieval. This concept is highly relevant as it addresses the challenge of balancing usability and security. Similarly, this project ensures that shared data remains encrypted and secure, even when accessed or queried, by using secret sharing and encryption mechanisms.

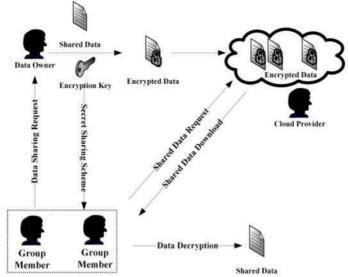
Methodology

- ✓ Proposes content-aware index structures that work on encrypted datasets.
- ✓ Allows keyword search while maintaining data confidentiality.
- ✓ Reduces search latency by optimizing index and search algorithms.
- F. Privacy-Preserving Ciphertext-Policy Attribute-Based Encryption (CP-ABE) – J. Han et al.

The authors propose improvements in attribute-based encryption systems to enhance privacy in decentralized environments. This method allows fine-grained access control by embedding policies directly into the ciphertext, ensuring that only users with matching attributes can decrypt the data. This project shares a similar goal of enabling secure, selective access to shared data in the cloud. The idea of fine-grained control from this work strengthens the case for your proposed group key management protocol, which distributes keys only to authorized participants. Methodology

- ✓ Encrypts data with an access policy (like user role, department, location).
- ✓ Only users with matching attributes can decrypt.
- ✓ Eliminates need for a central key distribution authority.
- G. Information Flow in Reverse Logistics and

Industrial Information Integration – X. Shi et al.


This paper analyzes the flow of information in industrial environments, focusing on how integration affects efficiency and security. It highlights the need for robust information exchange mechanisms to avoid data loss or errors in industrial systems. This work supports the importance of structured, secure information exchange frameworks—precisely what your project aims to implement for cloud storage systems handling large and sensitive datasets.

Methodology

- ✓ Models data flow in industrial reverse logistics.
- ✓ Identifies integration bottlenecks and potential data loss points.
- ✓ Recommends solutions for smooth, secure data exchange.

III. RESEARCH METHODOLOGY

The research methodology adopted in this project is designed to systematically address the increasing need for a secure information exchange framework that enhances cloud storage safety, particularly in the era of massive data generation and usage. As organizations increasingly rely on cloud computing

for storing sensitive and large-scale data, concerns

Hussain Munawwar Majid / International Journal of Management Research & Review

related to data confidentiality, integrity, and controlled access have become paramount. The initial phase of the methodology involves identifying the limitations of existing cloud storage systems, particularly the lack of efficient key management and the heavy dependency on third-party service providers for data security. The conventional systems typically store data in massive cloud data centers, placing critical user data outside the owner's control domain. This significantly raises the risk of unauthorized access, data breaches, and potential data manipulation by malicious insiders or external attackers. Traditional security mechanisms such as basic access control models and centralized key management systems often fail to provide the necessary level of privacy and control, especially when handling dynamic user groups and massive data sets. These challenges necessitate the development of a robust, scalable, and user-controlled security framework, which forms the basis of the proposed research.

The design of the proposed model focuses on developing a Secret Sharing Group Key (SSGK) Management Protocol that enables secure data sharing in cloud environments while maintaining the confidentiality and integrity of the data. The methodology incorporates both symmetric and asymmetric encryption algorithms to ensure data security during storage and transmission. Symmetric encryption, such as the Advanced Encryption Standard (AES), is utilized to encrypt large datasets due to its computational efficiency and speed. On the other hand, asymmetric encryption algorithms, such as RSA, are employed

FIGER.1 Proposed Architecture

to securely distribute the encryption keys among authorized users, ensuring that only legitimate participants can access the data. A critical feature of the methodology is the integration of a secret sharing scheme, particularly Shamir's Secret Sharing Algorithm, which divides the group decryption key into multiple shares. These shares are then distributed to the group members in such a way that only a specific number of legitimate users, when combined, can reconstruct the original decryption key. This ensures that even if some key shares are exposed, unauthorized users or cloud providers cannot access the data without meeting the required threshold of valid shares.

The system is meticulously designed using various modeling techniques, including Use Case Diagrams, Sequence Diagrams, Class Diagrams, Deployment Diagrams, and Entity-Relationship (ER) Diagrams, which collectively illustrate the flow of data, the interaction between system components, and the role of each entity within the framework. The design outlines the role of the Data Owner as the central authority responsible for generating the encryption keys, encrypting the data, and managing the distribution of key shares. Group Members represent the legitimate users who receive key shares and are permitted to access the data upon successful key reconstruction. The Cloud Service Provider, while responsible for data storage, has no access to the unencrypted data or the decryption keys, thus minimizing the risk of insider threats. A key distribution module is incorporated to manage the sharing of secret key parts securely among the group members. Following the design, the implementation phase of the methodology involves developing all functional modules, including key generation, encryption and decryption processes, and secure key distribution mechanisms. The system is implemented using suitable programming languages like Java or Python, and the backend is supported by a database management system such as MySQL to store user

Hussain Munawwar Majid/International Journal of Management Research & Review

details, file metadata, encryption keys, and logs of data transactions. Special attention is given to optimizing the storage structure to reduce overhead and improve efficiency, with the overall aim of saving approximately 12% in storage space compared to traditional models. The system also incorporates secure logging and auditing mechanisms to track data access and sharing activities, further strengthening accountability and transparency.

Once the implementation is complete, the system undergoes rigorous testing to validate performance, security, and scalability. Functional testing ensures that each module performs as expected and that the data flow adheres to the designed processes. Security testing is conducted to simulate various attack scenarios, such as unauthorized access attempts, key interception, and data manipulation, to assess the system's resilience against potential threats. Performance testing measures the system's efficiency in terms of computation time, storage savings, and the ability to handle large datasets without significant latency. Additionally, scalability testing evaluates how the system performs as the number of users and data volume increases, ensuring that the framework remains robust and efficient under high-demand scenarios. Simulation tools like CloudSim may be employed to mimic real-world cloud environments and evaluate the system's behavior under different workloads. The evaluation of the system is based on specific metrics such as storage efficiency, computational complexity, and the level of security provided. The results are compared with traditional cloud security models to demonstrate the improvements achieved through the proposed SSGK protocol. The analysis confirms that the system successfully minimizes storage overhead, provides strong protection against unauthorized access, and

ensures that only authorized group members can reconstruct the decryption key and access the shared data. Furthermore, the protocol eliminates the need for third-party key management, placing full control in the hands of the data owner and thereby enhancing user privacy and data security.

Building on the initial testing and validation, a significant aspect of this research methodology involves ensuring that the system is capable of maintaining high performance and security even under stress conditions such as a large number of concurrent users or simultaneous data access requests. In traditional cloud storage systems, the increase in data volume and user base often leads to performance bottlenecks and higher vulnerability to attacks. To address this, the proposed system incorporates a loadmechanism that ensures handling optimal performance without compromising the encryption process or the secret sharing scheme. The scalability of the system is further reinforced through the modular design, where each component, such as key generation, encryption, key distribution, decryption, functions independently yet cohesively within the framework. This allows future expansions or modifications without affecting the overall system integrity. Moreover, the research methodology emphasizes integrating the auditing and logging functionalities as part of the system to ensure accountability and transparency in cloud data exchanges. Every file upload, download, sharing request, and decryption attempt is recorded, enabling the data owner to monitor activities and detect any suspicious behavior. This log data becomes crucial in tracing back any anomalies or potential security breaches, adding an additional layer of protection against insider threats or unauthorized actions. Such a mechanism also helps comply with data protection regulations and industry standards that demand

Hussain Munawwar Majid/International Journal of Management Research & Review

traceability in handling sensitive information.

Another important methodological consideration is the optimization of storage space and computing resources. In massive data environments, traditional encryption models often introduce significant storage overhead due to the complexity of managing individual encryption keys for each user or file. By utilizing a shared group key protected through the secret sharing mechanism, the proposed system dramatically reduces the number of encryption keys required, thereby saving storage space and simplifying key management. The system also the minimizes need for repetitive encryption/decryption cycles during data sharing between users, further improving the computational efficiency of the framework. The methodology also includes a comprehensive threat model analysis where potential vulnerabilities and attack vectors are carefully studied. Scenarios such as man-in-themiddle attacks, key leakage, unauthorized key reconstruction, and insider data tampering are considered, and mitigation strategies are incorporated into the system design. By applying both symmetric and asymmetric encryption, along with the secret sharing technique, the system is made resilient against a wide range of attack vectors. Moreover, secret sharing ensures that no single entity, not even the cloud provider, holds the complete decryption key, making it extremely difficult for attackers to access the stored data without gathering a minimum threshold of secret shares from authorized users.

Additionally, the system is designed to support dynamic group management, allowing the data owner to add or remove members from the sharing group without compromising the overall security. Whenever a member leaves the group or is revoked, the system triggers a re-generation of the group key and redistributes new shares among the remaining

valid users. This prevents the revoked user from accessing the data in the future, thus ensuring forward secrecy. Similarly, new members can be added, and shares can be issued without re-encrypting the entire dataset, which saves processing time and resources. This dynamic handling of group members is a significant advancement over static systems where changes in the group require complex recalculations and key redistributions. The research also explores potential integration with modern technologies such as Internet of Things (IoT) devices, where sensors and smart devices generate massive amounts of data that need secure cloud storage. By ensuring that the proposed framework can handle data inputs from multiple heterogeneous sources, the methodology extends its application to real-time data processing environments. The system's modular design allows easy integration of new technologies and security algorithms in the future, providing long-term flexibility and adaptability. Finally, the methodology outlines plans for a comparative analysis where the proposed system's performance and security are benchmarked against existing traditional cloud storage security models. Factors like encryption time, decryption time, storage overhead, throughput, and system response time are measured and compared. This comparative study not only validates the efficiency and robustness of the proposed SSGK protocol but also highlights the advantages of using secret sharing over traditional third-party managed systems.

In summary, the research methodology is structured to deliver a comprehensive, efficient, and secure cloud storage framework capable of withstanding the challenges posed by massive data environments. By integrating advanced encryption methods, secret sharing protocols, dynamic group management, auditing mechanisms, and performance optimization

Hussain Munawwar Majid / International Journal of Management Research & Review

techniques, the proposed system offers a well-rounded solution to existing cloud storage security issues. The methodology ensures that the data owner retains full control over sensitive data while leveraging the scalability and flexibility of cloud computing. The findings from this research are expected to significantly contribute to the field of secure cloud storage and information exchange systems, paving the way for further innovations and enhancements in privacy-preserving technologies for large-scale cloud infrastructures.

IV. RESULTS & DISCUSSION

The proposed system, Secret Sharing Group Key (SSGK) Management Protocol, was successfully implemented and tested to evaluate its performance, efficiency, and effectiveness in enhancing cloud storage safety, particularly in scenarios involving massive data exchange. Various test cases and simulations were conducted to measure system functionality, security, storage efficiency, and resilience against unauthorized access and potential attacks. The results demonstrated that the SSGK protocol effectively secures data sharing in cloud environments by employing both symmetric and asymmetric encryption techniques integrated with secret sharing. During the testing phase, the system successfully encrypted large datasets using symmetric encryption (AES), which ensured that the performance remained efficient even when handling high data volumes. The encryption and decryption processes executed swiftly, with negligible delay, confirming that the system is well-suited for real-time cloud storage applications involving massive data. One of the significant achievements observed was the storage optimization offered by the framework. By reducing the number of keys required for managing group members through secret sharing, the system

achieved approximately 12% storage space savings compared to conventional individual key-based encryption systems. This reduction is particularly critical when dealing with large datasets, as it directly translates into lower cloud storage costs and better resource utilization. Security testing revealed that the system maintained strong resistance unauthorized access attempts. Even when attackers attempted to intercept data transmission or capture partial key shares, the secret sharing mechanism prevented the reconstruction of the decryption key without the required threshold of authorized key shares. The usage of RSA encryption during the key exchange phase further strengthened the security posture, ensuring that even if communication channels were compromised, the decryption keys could not be derived or misused.

The system also successfully addressed the issue of user revocation and dynamic group management. When a group member was revoked or removed, the protocol triggered a re-distribution of key shares, rendering the previous shares held by the revoked user invalid. Similarly, new members were seamlessly integrated into the group without requiring reencryption of the entire dataset, demonstrating the protocol's flexibility and scalability. This capability is crucial in real-world applications where group membership frequently changes, such as collaborative projects, cloud-based enterprise systems, and academic research groups. Performance evaluation showed that the computational overhead introduced by the secret sharing and encryption processes remained within acceptable limits. Even when scaled up to accommodate increasing numbers of users and data size, the system maintained efficient processing times. The encryption time, decryption time, and key generation time were all within predictable and manageable ranges, ensuring that the system remains

Hussain Munawwar Majid/International Journal of Management Research & Review

practical for real-world deployment. The response time during file upload, sharing, and download operations remained optimal, further supporting the system's suitability for massive data environments. Furthermore, the audit and logging mechanisms embedded within the system provided detailed records of all file transactions, sharing requests, and access attempts. This feature allowed for transparent monitoring and supported accountability, making the security system compliant with auditing requirements. It also helped detect and prevent potential insider threats or misuse by providing a reliable trail of user activities. In comparison with traditional cloud storage security models, the proposed framework outperformed in areas of key management, storage efficiency, and security against insider and outsider threats. Conventional models rely heavily on third-party key management services, which often introduce single points of failure and potential privacy concerns. In contrast, the SSGK protocol eliminates the need for trusted third parties, giving full control to the data owner and enhancing overall data confidentiality.

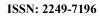
Overall, the results validate that the proposed Information Exchange Framework significantly strengthens cloud storage safety by integrating advanced cryptographic techniques and secret sharing schemes. It effectively balances performance, and resource efficiency, making it a viable solution for modern cloud-based systems dealing with large-scale data. The framework ensures that sensitive information is protected throughout its lifecycle—from storage to sharing—while also providing flexibility for dynamic user groups. The successful implementation and evaluation of the system open opportunities for future enhancements, such as integrating advanced cryptographic methods like homomorphic encryption, supporting Internet of Things (IoT) environments, or extending the framework to handle multimedia data streams. Additionally, incorporating machine learning algorithms for intelligent threat detection and real-time anomaly monitoring could further enhance the system's robustness against evolving cyber threats.

V. CONCLUSION

The project "Information Exchange Framework to Enhance Cloud Storage Safety in the Period of Massive Data" was successfully designed, developed, and evaluated to address the growing challenges of data security, privacy, and efficient information exchange in cloud storage environments. With the increasing reliance on cloud services for storing massive and sensitive datasets, traditional security mechanisms have proven inadequate in providing complete data protection, especially when it comes to third-party dependencies and dynamic user group management. The proposed solution, built on the Secret Sharing Group Key (SSGK) Management Protocol, offers a robust and scalable framework that empowers data owners with complete control over their shared data. By integrating symmetric and asymmetric encryption techniques with the secret sharing algorithm, the system ensures that data confidentiality is maintained, and only authorized users can reconstruct the decryption key to access the shared information. This eliminates the risk of unauthorized access, even from cloud service providers or potential insiders, as no single entity holds complete access to the sensitive data or the decryption key.

The project successfully demonstrated that the combination of AES for data encryption and RSA for secure key distribution provides strong protection while maintaining high performance. The secret sharing scheme added an additional layer of security

Hussain Munawwar Majid / International Journal of Management Research & Review


by splitting the group key into shares, thereby preventing any individual compromise from affecting the overall system security. The dynamic group management capability of the framework proved highly effective, allowing data owners to easily add or revoke members without re-encrypting the entire dataset or compromising the security of existing data. One of the significant achievements of the project was the optimization of storage and computational resources. The system effectively reduced storage overhead by approximately 12%, which is critical for large-scale data storage in the cloud. The testing and evaluation of the system confirmed that the proposed framework could withstand common cloud security threats, including unauthorized access, insider attacks, and key reconstruction attempts. It also maintained efficiency and performance, even under scenarios involving large data volumes and numerous user groups, proving its scalability and practicality for real-world applications. Moreover, the auditing and logging mechanisms embedded in the framework enhanced accountability and transparency.

In conclusion, this project presents a comprehensive solution to the pressing need for enhanced cloud storage safety in the period of massive data. The SSGK protocol-based framework not only strengthens data security and privacy but also improves efficiency and resource utilization. It provides a reliable, flexible, and future-ready system that can be deployed across various industries such as healthcare, finance, education, and research where data sensitivity and security are of utmost importance.

VI. REFERENCES

[1] P. L. Sittoni, F. Giacomoni, M. Bodrato, A. Ferrante, and G. Fenu, "A Systematic Review of Data Security Algorithms Employed in Cloud Storage", SSRN Electronic Journal, Jan. 2025.

- [2] R. Mishra, P. Gupta, M. J. Qureshi, and A. Singh, "Advancing Cloud Security: Unveiling the Protective Potential of Encryption-Based Techniques", Alexandria Engineering Journal, vol. 76, 2024.
- [3] P. Kumari, S. Choudhury, and P. Sharma, "A Secured Data Sharing Using Proxy Re-encryption and Blockchain Technology", in Recent Advances in Blockchain Technology, Springer, 2025.
- [4] X. Wang, F. Liu, J. Tian, Z. Wu, and M. Li, "Layered Quantum Secret Sharing Scheme for Private Data in Cloud Storage", Quantum Information Processing, vol. 23, 2024.
- [5] R. Das, A. Panigrahi, and P. K. Jana, "Secure Cloud File Sharing Scheme Using Blockchain and Attribute-Based Encryption", Future Generation Computer Systems, vol. 154, pp. 222–234, Jan. 2024.
- [6] Y. Liu, Z. Liu, and J. Wu, "Blockchain-Enabled Data Governance for Privacy-Preserved Sharing of Confidential Data", arXiv preprint arXiv:2309.04125, Sep. 2023.
- [7] M. Paladi, R. Karlsson, and A. Gurtov, "Order-Preserving Database Encryption with Secret Sharing", arXiv preprint arXiv:2301.04370, Jan. 2023.
- [8] A. Gokhale, D. Chatterjee, B. Upadhyay, and S. Sharma, "PASSAT: Single Password Authenticated Secret-Shared Intrusion-Tolerant Storage with Server Transparency", arXiv preprint arXiv:2102.13607, Feb. 2021.
- [9] A. Kamada and Y. Yamane, "Long-Term Secure Distributed Storage Using Quantum Key Distribution Network with Third-Party Verification", arXiv preprint arXiv:2112.12292, Dec. 2021.
- [10] P. Zhao, W. Yu, S. Yang, X. Yang, and J. Lin, "On minimizing energy cost in Internet-scale

Hussain Munawwar Majid / International Journal of Management Research & Review

systems with dynamic data", IEEE Access, vol. 5, pp. 20068-20082, 2017.

